

Part - A

Answer ALL Questions.
$(10 \times 2=20)$

1. Design an OP-AMP based inverting amplifier circuit with a gain of 2.5 .
2. What is CMRR?
3. Write a brief note on the Address and Data busses of $\mu \mathrm{P} 8086$.
4. Develop a program segment for $\mu \mathrm{P} 8086$ to store 00 h to FFh in a byte array ARY.
5. Develop a program for $\mu \mathrm{P} 8086$ tmanerse a two digit unpacked BCD number in AX .
6. If AH contains 55 h and CL contathelif ABh , what will be the status of the conditional flags after (i) ADD AH,CL and (ii) XOR AH,CL.

7. Write a brief note on the XLAT instruction of $\mu \mathrm{P} 8086$.
8. What do you mean by identifiers and keywords in $\mathrm{C}++$?
9. Write a program in $\mathrm{C}++$ to solve the expression, $\sqrt{x+2 y}$.
Part - B

Answer any FOUR Questions.
($4 \times 7.5=30$)
11. a) Explain with a neat diagram the function of an OP-AMP as a summing amplifier
b) What will be the output voltage of a summing amplifier if $\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=10 \mathrm{k} \Omega$ and $\mathrm{V}_{1}=1 \mathrm{~V}, \mathrm{~V}_{2}=0.8 \mathrm{~V}$ and $\mathrm{V}_{3}=1.1 \mathrm{~V}$?
12. Illustrate with two sample instructions for each, the various addressing modes of data in $\mu \mathrm{P} 8086$.
13. Develop an ASM program for $\mu \mathrm{P} 8086$ to check if the word variable N represents a leap year. If true, BL must be set to 1 else to 0 . (Hint: A leap year is divisible by 4 and not by 64 h).
14. Write a note on the interrupt controller 8259A.
15. Write a program in $\mathrm{C}++$ to find the sum of $1+3+5$ \qquad $+99$.
Part - C

Answer any FOUR Questions.
16. a) What is a D / A converter? Explain the working of an R-2R ladder D / A converter (7.5)
b) For a 5 bit $\mathrm{R}-2 \mathrm{R}$ ladder D / A converter, determine the full scale voltage and the output voltage when the MSB is set. Given 0 state $=0 \mathrm{~V}$ and 1 state $=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{f}}=\mathrm{R}=10 \mathrm{k} \Omega$.
17. DPX and DPY are two 32 bit unsigned numbers. Develop an ASM program for $\mu \mathrm{P} 8086$ to find the product and store the result at DPZ. DPX, DPY and DPZ are word variables.
18. Develop an ASM program for $\mu \mathrm{P} 8086$ to copy an array to an overlapping area.
19. With a block diagram, discuss bus buffering and latching in maximum mode of $\mu \mathrm{P} 8086$.

Write a program in $\mathrm{C}++$ to solve $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using a) Trapezoidal rule and b) Simpson $1 / 3$ rule.

